Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(20): 11938-11947, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36370103

RESUMO

Some transcription factors bind DNA motifs containing direct or inverted sequence repeats. Preference for each of these DNA topologies is dictated by structural constraints. Most prokaryotic regulators form symmetric oligomers, which require operators with a dyad structure. Binding to direct repeats requires breaking the internal symmetry, a property restricted to a few regulators, most of them from the AraC family. The KorA family of transcriptional repressors, involved in plasmid propagation and stability, includes members that form symmetric dimers and recognize inverted repeats. Our structural analyses show that ArdK, a member of this family, can form a symmetric dimer similar to that observed for KorA, yet it binds direct sequence repeats as a non-symmetric dimer. This is possible by the 180° rotation of one of the helix-turn-helix domains. We then probed and confirmed that ArdK shows affinity for an inverted repeat, which, surprisingly, is also recognized by a non-symmetrical dimer. Our results indicate that structural flexibility at different positions in the dimerization interface constrains transcription factors to bind DNA sequences with one of these two alternative DNA topologies.


Assuntos
DNA , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Sequência de Bases , Sequência de Aminoácidos , Sequências Hélice-Volta-Hélice , DNA/química , Inversão de Sequência , Sítios de Ligação
2.
PLoS Genet ; 16(4): e1008750, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32348296

RESUMO

Plasmids, when transferred by conjugation in natural environments, must overpass restriction-modification systems of the recipient cell. We demonstrate that protein ArdC, encoded by broad host range plasmid R388, was required for conjugation from Escherichia coli to Pseudomonas putida. Expression of ardC was required in the recipient cells, but not in the donor cells. Besides, ardC was not required for conjugation if the hsdRMS system was deleted in P. putida recipient cells. ardC was also required if the hsdRMS system was present in E. coli recipient cells. Thus, ArdC has antirestriction activity against the HsdRMS system and consequently broadens R388 plasmid host range. The crystal structure of ArdC was solved both in the absence and presence of Mn2+. ArdC is composed of a non-specific ssDNA binding N-terminal domain and a C-terminal metalloprotease domain, although the metalloprotease activity was not needed for the antirestriction function. We also observed by RNA-seq that ArdC-dependent conjugation triggered an SOS response in the P. putida recipient cells. Our findings give new insights, and open new questions, into the antirestriction strategies developed by plasmids to counteract bacterial restriction strategies and settle into new hosts.


Assuntos
Conjugação Genética , Proteínas Virais/química , Domínio Catalítico , Cristalografia por Raios X , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Especificidade de Hospedeiro , Magnésio/química , Metaloproteases/química , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
Front Microbiol ; 9: 39, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441046

RESUMO

Many bioactive natural products are glycosylated compounds in which the sugar components usually participate in interaction and molecular recognition of the cellular target. Therefore, the presence of sugar moieties is important, in some cases essential, for bioactivity. Searching for novel glycosylated bioactive compounds is an important aim in the field of the research for natural products from actinomycetes. A great majority of these sugar moieties belong to the 6-deoxyhexoses and share two common biosynthetic steps catalyzed by a NDP-D-glucose synthase (GS) and a NDP-D-glucose 4,6-dehydratase (DH). Based on this fact, seventy one Streptomyces strains isolated from the integument of ants of the Tribe Attini were screened for the presence of biosynthetic gene clusters (BGCs) for glycosylated compounds. Total DNAs were analyzed by PCR amplification using oligo primers for GSs and DHs and also for a NDP-D-glucose-2,3-dehydratases. Amplicons were used in gene disruption experiments to generate non-producing mutants in the corresponding clusters. Eleven mutants were obtained and comparative dereplication analyses between the wild type strains and the corresponding mutants allowed in some cases the identification of the compound coded by the corresponding cluster (lobophorins, vicenistatin, chromomycins and benzanthrins) and that of two novel macrolactams (sipanmycin A and B). Several strains did not show UPLC differential peaks between the wild type strain and mutant profiles. However, after genome sequencing of these strains, the activation of the expression of two clusters was achieved by using nutritional and genetic approaches leading to the identification of compounds of the cervimycins family and two novel members of the warkmycins family. Our work defines a useful strategy for the identification new glycosylated compounds by a combination of genome mining, gene inactivation experiments and the activation of silent biosynthetic clusters in Streptomyces strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...